
MPICH2 User’s Guide∗

Version 0.4

Mathematics and Computer Science Division

Argonne National Laboratory

William Gropp
Ewing Lusk

David Ashton
Darius Buntinas

Ralph Butler
Anthony Chan

Rob Ross
Rajeev Thakur
Brian Toonen

September 9, 2004

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

1

Contents

1 Introduction 1

2 Setting Paths 1

3 Quick Start 1

4 Compiling and Linking 2

4.1 Specifying Compilers . 2

4.2 Shared Libraries . 2

4.3 Special Issues for Fortran . 2

5 Running Programs with mpiexec 3

5.1 Standard mpiexec . 3

5.2 Extensions for All Process Management Environments 4

5.3 Extensions for the MPD Process Management Environment . 4

5.3.1 mpiexec arguments for MPD 4

5.3.2 Passing Environment Variables to Processes 5

5.3.3 Environment Variables Affecting mpiexec 7

5.4 Extensions for SMPD . 7

5.4.1 mpiexec arguments for SMPD 7

5.5 Extensions for Forker . 10

5.5.1 mpiexec arguments for Forker 10

6 Managing the Process Management Environment 10

6.1 MPD . 10

7 Debugging 11

i

7.1 mpigdb . 11

8 MPICH2 under Windows 15

8.1 Directories . 15

8.2 Compiling . 15

8.3 Running . 15

ii

1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH2 has already been installed. For instruc-
tions on how to install MPICH2, see the MPICH2 Installer’s Guide, or the
README in the top-level MPICH2 directory. This manual explains how to
compile, link, and run MPI applications, and use certain tools that come
with MPICH2. This is a preliminary version and some sections are not
complete yet. However, there should be enough here to get you started with
MPICH2.

2 Setting Paths

You will have to know the directory where MPICH2 has been installed.
(Either you installed it there yourself, or your systems administrator has
installed it. One place to look in this case might be /usr/local.) We
suggest that you put the bin subdirectory of that directory in your path.
This will give you access to assorted MPICH2 commands to compile, link,
and run your programs conveniently. Other commands in this directory
manage parts of the run-time environment and execute tools.

One of the first commands you might run is mpich2version to find out
the exact version and configuration of MPICH2 you are working with. Some
of the material in this manual depends on just what version of MPICH2 you
are using and how it was configured at installation time.

3 Quick Start

You should now be able to run an MPI program. Let us assume that the di-
rectory where MPICH2 has been installed is /home/you/mpich2-installed,
so that in the section above you did

setenv PATH /home/you/mpich2-installed/bin:$PATH

for tcsh and csh, or

expoert PATH=/home/you/mpich2-installed/bin:$PATH

4 COMPILING AND LINKING 2

for bash or sh. Then to run an MPI program, albeit only on one machine,
you can do:

mpd &
cd /home/you/mpich2-installed/examples
mpiexec -n 3 cpi
mpdallexit

Details for these commands are provided below, but if you can successfully
execute them here, then you have a correctly installed MPICH2 and have
run an MPI program.

4 Compiling and Linking

A convenient way to compile and link your program is by using scripts that
use the same compiler that MPICH2 was built with. These are mpicc,
mpicxx, mpif77, and mpif90, for C, C++, Fortran 77, and Fortran 90 pro-
grams, respectively. If any of these commands are missing, it means that
MPICH2 was configured without support for that particular language.

4.1 Specifying Compilers

You need not use the same compiler that MPICH2 was built with, but not
all compilers are compatible. You can also specify the compiler for building
MPICH2 itself, as reported by mpich2version just by using the compil-
ing and linking commands from the previous section. (See the Installer’s
Guide).

4.2 Shared Libraries

Currently shared libraries are only tested on Linux, and there are restric-
tions. See the Installer’s Guide for how to build MPICH2 as a shared
library.

4.3 Special Issues for Fortran

This section is under development.

5 RUNNING PROGRAMS WITH MPIEXEC 3

• Review of basic and extended support; the Fortran 90 module.

• Various name-mangling issues

5 Running Programs with mpiexec

If you have been using the original MPICH, or any of a number of other
MPI implementations, then you have probably been using mpirun as a way
to start your MPI programs. The MPI-2 Standard describes mpiexec as
a suggested way to run MPI programs. MPICH2 implements the mpiexec
standard, and also provides some extensions. MPICH2 provides mpirun for
backward compatibility with existing scripts, but it does not support the
same or as many options as mpiexec.

5.1 Standard mpiexec

Here we describe the standard mpiexec arguments from the MPI-2 Stan-
dard [1]. The simplest form of a command to start an MPI job is

mpiexec -n 32 a.out

to start the executable a.out with 32 processes (providing an MPI COMM WORLD
of size 32 inside the MPI application). Other options are supported, for spec-
ifying hosts to run on, search paths for executables, working directories, and
even a more general way of specifying a number of processes. Multiple sets
of processes can be run with different exectuables and different values for
their arguments, with “:” separating the sets of processes, as in:

mpiexec -n 1 -host loginnode master : -n 32 -host smp slave

The -configfile argument allows one to specify a file containing the spec-
ifications for process sets on separate lines in the file. This makes it unnec-
essary to have long command lines for mpiexec. (See p. 353 of [2].)

Currently the -soft argument (for giving hints instead of a precise num-
ber for the number of processes) is not supported.

5 RUNNING PROGRAMS WITH MPIEXEC 4

It is also possible to start a one process MPI job (with size of MPI COMM WORLD
equal to 1), without using mpiexec. This process will become an MPI pro-
cess when it calls MPI Init, and can then call other MPI functions, including
MPI Comm spawn.

5.2 Extensions for All Process Management Environments

Some mpiexec arguments are specific to particular communication sub-
systems (“devices”) or process management environments (“process man-
agers”). Our intention is to make all arguments as uniform as possible
across devices and process managers. For the time being we will document
these separately.

5.3 Extensions for the MPD Process Management Environ-
ment

MPICH2 provides a number of process management systems. The default
is called MPD. MPD provides a number of extensions to the standard form
of mpiexec.

5.3.1 mpiexec arguments for MPD

The default configuration of MPICH2 chooses the MPD process manager
and the “simple” implementation of the Process Management Interface.
MPD provides a version of mpiexec that supports both the standard ar-
guments described in Section 5.1 and other arguments described in this
section. MPD also provides a number of commands for querying the MPD
process management environment and interacting with jobs it has started.

Before running mpiexec, the runtime environment must be established.
In the case of MPD, the daemons must be running. See Section 6.1 for how
to run and manage the MPD daemons.

We assume that the MPD ring is up and the installation’s bin directory
is in your path; that is, you can do:

mpdtrace

5 RUNNING PROGRAMS WITH MPIEXEC 5

and it will output a list of nodes on which you can run MPI programs. Now
you are ready to run a program with mpiexec. Let us assume that you
have compiled and linked the program cpi (in the installdir/examples
directory and that this directory is in your PATH. Or that is your current
working directory and ’.’ (“dot”) is in your PATH. The simplest thing to
do is

mpiexec -n 5 cpi

to run cpi on five nodes. The process management system (such as MPD)
will choose machines to run them on, and cpi will tell you where each is
running.

You can use mpiexec to run non-MPI programs as well. This is some-
times useful in making sure all the machines are up and ready for use. Useful
examples include

mpiexec -n 10 hostname

and

mpiexec -n 10 printenv

5.3.2 Passing Environment Variables to Processes

The MPI-2 standard specifies the syntax and semantics of the arguments
-n, -path,-wdir, -host, -file, -configfile, and -soft. All of these are
currently implemented for MPD’s mpiexec except -soft. Each of these is
what we call a “local” option, since its scope is the processes in the set of
processes described between colons, or on separate lines of the file specified
by -configfile. We add some extensions that are local in this way and
some that are “global” in the sense that they apply to all the processes being
started by the invocation of mpiexec.

The MPI-2 Standard provides a way to pass different arguments to dif-
ferent application processes, but does not provide a way to pass environment
variables. The local parameter -env does this for one set of processes. That
is,

mpiexec -n 1 -env FOO BAR a.out : -n 2 -env BAZZ FAZZ b.out

5 RUNNING PROGRAMS WITH MPIEXEC 6

makes BAR the value of environment variable FOO on the first process, running
the executable a.out, and gives the environment variable BAZZ the value
FAZZ on the second two processes, running the executable b.out. To set an
environment variable without giving it a value, use ’’ as the value in the
above command line.

The global parameter -genv can be used to pass the same environment
variables to all processes. That is,

mpiexec -genv FOO BAR -n 2 a.out : -n 4 b.out

makes BAR the value of the environment variable FOO on all six processes. If
-genv appears, it must appear in the first group. If both -genv and -env
are used, the -env’s add to the environment specified or added to by the
-genv variables. If there is only one set of processes (no “:”), the -genv
and -env are equivalent.

The local parameter -envall is an abbreviation for passing the en-
tire environment in which mpiexec is executed. The global version of it
is -genvall. This global version is implicitly present. To pass no envi-
ronment variables, use -envnone and -genvnone. So, for example, to set
only the environment variable FOO and no others, regardless of the current
environment, you would use

mpiexec -genvnone -env FOO BAR -n 50 a.out

A list of environment variable names whose values are to be copied
from the current environment can be given with the -envlist (respectively,
-genvlist) parameter; for example,

mpiexec -genvnone -envlist PATH,LD_SEARCH_PATH -n 50 a.out

sets the PATH and LD LIBRARY PATH in the environment of the a.out pro-
cesses to their values in the environment where mpiexec is being run. In
this situation you can’t have commas in the environment variable names,
although of course they are permitted in values.

Some extension parameters have only global versions. They are

-l provides rank labels for lines of stdout and stderr. These are a bit
obscure for processes that have been explicitly spawned, but are still
useful.

5 RUNNING PROGRAMS WITH MPIEXEC 7

-usize sets the “universe size” that is retrieved by the MPI attribute
MPI UNIVERSE SIZE on MPI COMM WORLD.

-bnr is used when one wants to run executables that have been compiled
and linked using the ch p4mpd or myrinet device in MPICH1. The
MPD process manager provides backward compatibility in this case.

5.3.3 Environment Variables Affecting mpiexec

A small number of environment variables affect the behavior of mpiexec.

MPIEXEC TIMEOUT The value of this environment variable is the maximum
number of seconds this job will be permitted to run. When time is up,
the job is aborted.

MPIEXEC BNR If this environment variable is defined (its value, if any, is
currently insignificant), then MPD will act in backward-compatibility
mode, supporting the BNR interface from the original MPICH (e.g.
versions 1.2.0 – 1.2.6) instead of its native PMI interface, as a way for
application processes to interact with the process management system.

5.4 Extensions for SMPD

SMPD is an alternate process manager that runs on both Unix and Win-
dows. It can launch jobs across both platforms if the binary formats match
(big/little endianness and size of C types - int,long,void*,etc).

5.4.1 mpiexec arguments for SMPD

mpiexec for smpd accepts the standard MPI-2 mpiexec options. Execute

mpiexec

or

mpiexec -help2

to print the usage options. Typical usage:

5 RUNNING PROGRAMS WITH MPIEXEC 8

mpiexec -n 10 myapp.exe

All options to mpiexec:

-n x

-np x
launch x processes

-localonly x

-np x -localonly
launch x processes on the local machine

-machinefile filename
use a file to list the names of machines to launch on

-host hostname
launch on the specified host.

-hosts n host1 host2 ... hostn

-hosts n host1 m1 host2 m2 ... hostn mn
launch on the specified hosts. In the second version the number of
processes = m1 + m2 + ... + mn

-dir drive:\my\working\directory
-wdir /my/working/directory

launch processes with the specified working directory. (-dir and -wdir
are equivalent)

-env var val
set environment variable before launching the processes

-exitcodes
print the process exit codes when each process exits.

-noprompt
prevent mpiexec from prompting for user credentials. Instead errors
will be printed and mpiexec will exit.

-port port

5 RUNNING PROGRAMS WITH MPIEXEC 9

-p port
specify the port that smpd is listening on.

-phrase passphrase
specify the passphrase to authenticate connections to smpd with.

-smpdfile filename
specify the file where the smpd options are stored including the passphrase.
(unix only option)

-soft Fortran90 triple
acceptable number of processes to launch up to maxprocs

-path search path
search path for executable, ; separated

-timeout seconds
timeout for the job.

-prompt

Windows specific options:

-map drive:\\host\share
map a drive on all the nodes this mapping will be removed when the
processes exit

-logon
prompt for user account and password

-pwdfile filename
read the account and password from the file specified put the account
on the first line and the password on the second

-nomapping
don’t try to map the current directory on the remote nodes

-nopopup debug
disable the system popup dialog if the process crashes

-dbg
catch unhandled exceptions

6 MANAGING THE PROCESS MANAGEMENT ENVIRONMENT 10

-priority class[:level]
set the process startup priority class and optionally level.
class = 0,1,2,3,4 = idle, below, normal, above, high
level = 0,1,2,3,4,5 = idle, lowest, below, normal, above, highest
the default is -priority 1:3

-register
encrypt a user name and password to the Windows registry.

-remove
delete the encrypted credentials from the Windows registry.

-validate [-host hostname]
validate the encrypted credentials for the current or specified host.

5.5 Extensions for Forker

The forker is a process management system for starting processes on a
single machine, so called because the MPI processes are simply forked from
the mpiexec process.

5.5.1 mpiexec arguments for Forker

The argument -maxtime sets a maximum time in seconds for the job to run.

6 Managing the Process Management Environment

Some of the process managers supply user commands that can be used to
interact with the process manager and to control jobs. In this section we
describe user commands that may be useful.

6.1 MPD

mpd starts an mpd daemon.

mpdboot starts a set of mpd’s on a list of machines.

7 DEBUGGING 11

mpdtrace lists all the MPD daemons that are running. The -l option lists
full hostnames and the port where the mpd is listening.

mpdlistjobs lists the jobs that the mpd’s are running. Jobs are identified
by the name of the mpd where they were submitted and a number.

mpdkilljob kills a job specified by the name returned by mpdlistjobs

mpdsigjob delivers a signal to the named job. Signals are specified by name
or number.

You can use keystrokes to provide signals in the usual way, where mpiexec
stands in for the entire parallel application. That is, if mpiexec is being
run in a Unix shell in the foreground, you can use ^C (control-C) to send
a SIGINT to the processes, or ^Z (control-Z) to suspend all of them. A
suspended job can be continued in the usual way.

Precise argument formats can be obtained by passing any MPD com-
mand the --help or -h argument. More details can be found in the README
in the mpich2 top-level directory or the README file in the MPD directory
mpich2/src/pm/mpd.

7 Debugging

Debugging parallel programs is notoriously difficult. Here we describe a
number of approaches, some of which depend on the exact version of MPICH2
you are using.

7.1 mpigdb

If you are using the MPD process manager, you can use the command mpigdb
instead of mpiexec to execute a program with each process running under
the control of the gdb sequential debugger. mpigdb helps control the multiple
instances of gdb by sending stdin either to all processes or to a selected
process and by labeling and merging output. The following script of an
mpigdb session gives an idea of how this works. Input keystrokes are sent
to all processes unless specifially directed by the “z” command.

ksl2% mpigdb -n 10 cpi

7 DEBUGGING 12

0-9: (gdb) l
0-9: 5 double f(double);
0-9: 6
0-9: 7 double f(double a)
0-9: 8 {
0-9: 9 return (4.0 / (1.0 + a*a));
0-9: 10 }
0-9: 11
0-9: 12 int main(int argc,char *argv[])
0-9: 13 {
0-9: 14 int done = 0, n, myid, numprocs, i;
0-9: (gdb)
0-9: 15 double PI25DT = 3.141592653589793238462643;
0-9: 16 double mypi, pi, h, sum, x;
0-9: 17 double startwtime = 0.0, endwtime;
0-9: 18 int namelen;
0-9: 19 char processor_name[MPI_MAX_PROCESSOR_NAME];
0-9: 20
0-9: 21 MPI_Init(&argc,&argv);
0-9: 22 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
0-9: 23 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
0-9: 24 MPI_Get_processor_name(processor_name,&namelen);
0-9: (gdb)
0-9: 25
0-9: 26 fprintf(stdout,"Process %d of %d is on %s\n",
0-9: 27 myid, numprocs, processor_name);
0-9: 28 fflush(stdout);
0-9: 29
0-9: 30 n = 10000; /* default # of rectangles */
0-9: 31 if (myid == 0)
0-9: 32 startwtime = MPI_Wtime();
0-9: 33
0-9: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0-9: (gdb) b 30
0-9: Breakpoint 2 at 0x4000000000002541: file /home/lusk/mpich2/examples/cpi.c, line 30.
0-9: (gdb) r
0-9: Continuing.
0: Process 0 of 10 is on ksl2
1: Process 1 of 10 is on ksl2
2: Process 2 of 10 is on ksl2
3: Process 3 of 10 is on ksl2
4: Process 4 of 10 is on ksl2
5: Process 5 of 10 is on ksl2
6: Process 6 of 10 is on ksl2
7: Process 7 of 10 is on ksl2

7 DEBUGGING 13

8: Process 8 of 10 is on ksl2
9: Process 9 of 10 is on ksl2
0-9:
0-9: Breakpoint 2, main (argc=1, argv=0x60000fffffffb4b8)
0-9: at /home/lusk/mpich2/examples/cpi.c:30
0-9: 30 n = 10000; /* default # of rectangles */
0-9: (gdb) n
0-9: 31 if (myid == 0)
0-9: (gdb) n
0: 32 startwtime = MPI_Wtime();
1-9: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0-9: (gdb) z 0
0: (gdb) n
0: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0: (gdb) z
0-9: (gdb) where
0-9: #0 main (argc=1, argv=0x60000fffffffb4b8)
0-9: at /home/lusk/mpich2/examples/cpi.c:34
0-9: (gdb) n
0-9: 36 h = 1.0 / (double) n;
0-9: (gdb)
0-9: 37 sum = 0.0;
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)

7 DEBUGGING 14

0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb) p sum
0: $1 = 19.999875951497799
1: $1 = 19.999867551672725
2: $1 = 19.999858751863549
3: $1 = 19.999849552071328
4: $1 = 19.999839952297158
5: $1 = 19.999829952542203
6: $1 = 19.999819552807658
7: $1 = 19.999808753094769
8: $1 = 19.999797553404832
9: $1 = 19.999785953739192
0-9: (gdb) c
0-9: Continuing.
0: pi is approximately 3.1415926544231256, Error is 0.0000000008333325
1-9:
1-9: Program exited normally.
1-9: (gdb) 0: wall clock time = 44.909412
0:
0: Program exited normally.
0: (gdb) q
0-9: MPIGDB ENDING
ksl2%

You can attach to a running job with

mpdgdb -a <jobid>

where <jobid> comes from mpdlistjobs.

8 MPICH2 UNDER WINDOWS 15

8 MPICH2 under Windows

8.1 Directories

The default installation of MPICH2 is in C:\Program Files\MPICH2. Un-
der the installation directory are three sub-directories: include, bin, and
lib. The include and lib directories contain the header files and libraries
necessary to compile MPI applications. The bin directory contains the pro-
cess manager, smpd.exe, and the MPI job launcher, mpiexec.exe. The dlls
that implement MPICH2 are copied to the Windows system32 directory.

8.2 Compiling

The libraries in the lib directory were compiled with MS Visual C++ .NET
2003 and Intel Fortran 8.0 with the default MPICH2 socket channel. These
compilers and any others that can link with the MS .lib files can be used
to create user applications. gcc and g77 for cygwin can be used with the
libmpich*.a libraries.

For MS Developer Studio users: Create a project and add C:\Program
Files\MPICH2\include to the include path and C:\Program Files\MPICH2\lib
to the library path. Add cxx.lib and mpich2.lib to the Release target link
command. Add cxxd.lib and mpich2d.lib to the Debug target.

Intel Fortran 8 users add fmpich2d.lib to the link command in addition
to the libraries mentioned above.

cygwin users use libmpich2.a libfmpich2g.a.

8.3 Running

MPI jobs are run from a command prompt using mpiexec.exe. See section
5.4 on mpiexec for smpd for a description of the options to mpiexec.

References

[1] Message Passing Interface Forum. MPI2: A Message Passing Interface

REFERENCES 16

standard. International Journal of High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

[2] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker,
and Jack Dongarra. MPI—The Complete Reference: Volume 1, The
MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

	Introduction
	Setting Paths
	Quick Start
	Compiling and Linking
	Specifying Compilers
	Shared Libraries
	Special Issues for Fortran

	Running Programs with mpiexec
	Standard mpiexec
	Extensions for All Process Management Environments
	Extensions for the MPD Process Management Environment
	mpiexec arguments for MPD
	Passing Environment Variables to Processes
	Environment Variables Affecting mpiexec

	Extensions for SMPD
	mpiexec arguments for SMPD

	Extensions for Forker
	mpiexec arguments for Forker

	Managing the Process Management Environment
	MPD

	Debugging
	mpigdb

	MPICH2 under Windows
	Directories
	Compiling
	Running

